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In this paper we present a numerical method of high order for solving the mul-
tidimensional elastic–plastic wave equation. The basic idea is to decompose the
hyperbolic PDE into advection equations, which can be solved numerically. Fur-
thermore, the occurrence of plasticity makes it necessary to solve an ODE for the
stress–strain relationship at every point. c© 2002 Elsevier Science (USA)

1. INTRODUCTION

The wave equation of an elastic material represents a hyperbolic conservation law for the
momentum and the strain variables and can be solved with standard methods for conserva-
tion laws. However, for solids which undergo plastic deformation, only the momentum but
not the strain variables are conserved.

There exist a large number of numerical schemes for hyperbolic equations (cf. [1, 4, 7, 8,
19]), some of which have been used for the simulation of waves in solids (e.g., [9]–[14]). In
this work, we follow the ansatz of Fey et al. in [2, 3, 5], who developed a high-order scheme
called Method of Transport for solving multidimensional Euler equations. The basic idea
is to decompose the partial differential equation into scalar advection equations which can
be solved numerically.

Although the elastic–plastic wave equation is not a pure conservation law, we were able
to use the ansatz of Fey to construct a genuinely multidimensional numerical scheme of
high order for plastic waves. It is important to mention that unlike most other numerical
schemes, our method can be used for approximations of any order in space and time,
which is extremely advantageous for simulations of high accuracy. Furthermore, the general
treatment of elasto-plasticity introduced in this paper can be used for other numerical
methods for hyperbolic PDEs as well and for any kind of hysteresis model. For example,
a treatment of hysteresis effects in electrodynamics would be straightforward with the
numerical concepts presented.
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In this paper we first give a brief introduction into the governing equations of elasto-
plasticity. Afterward, we present our numerical scheme and finally we give some numerical
results in 2-D and 3-D.

2. GOVERNING EQUATIONS

We use a formulation of the elastic–plastic wave equation as a first-order system, which
means we have to use three physical variables: The symmetric stress tensor σ

¯
, the symmetric

strain tensor ε
¯
, and the velocity vector �v. Furthermore, we need the deviatoric stress tensor

s
¯
, which is defined as si j = σi j − 1

3δi jσkk .
With these variables, we get three equations describing the conservation of momentum

(ρ = density)

ρ
∂

∂t
vi =

3∑
j=1

∂

∂x j
σi j i = 1, . . . , 3 (1)

and six compatibility relations between velocity and strain variables

∂

∂t
εi j = 1

2

(
∂

∂x j
vi + ∂

∂xi
v j

)
i ≤ j = 1, . . . , 3, (2)

which are due to the fact that both strain and velocity variables are derivatives of the
displacement vector �u. Altogether we obtain nine equations describing wave phenomena
in solids. However, we still need an equation connecting stress and strain variables. For
plasticity there exists a relationship between infinitesimal changes of stress and strain only
(cf. [18]),

∂

∂t
εi j = 1 + ν

E

∂

∂t
σi j − ν

E
δi j

d

dt
σkk + si j

d

dt
χ, (3)

with ν = Poisson’s ratio and E = Young’s modulus. For elasticity Eq. (3) reduces with
d
dt χ ≡ 0 to Hooke’s law. It has to be mentioned that our system describes solids in the limit
of small strains; i.e., it is a linearization of the general flow equations (cf. [6, 15]).

To distinguish between elastic and plastic deformation we use the so-called von Mises
yield function:

f (s
¯
) = 1

2
si j si j =: κ2. (4)

Basically, plasticity occurs at a certain point if the current function κ(t) in that point attains
the value of κ0(t), which is the maximal value of κ(t) in the past; i.e., with

κ0(t) = max
t0≤t ′≤t

κ(t ′)

three different cases may occur:

• κ(t) < κ0(t): Elastic deformation.
• κ(t) = κ0(t) and d

dt κ ≤ 0: Elastic deformation.
• κ(t) = κ0(t) and d

dt κ > 0: Plastic deformation.
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FIG. 1. Response of the strain variable ε to the stress σ in the case when hysteresis occurs: For small stresses
(i.e., |σ | ≤ κ0), the relationship is linear (Hooke’s law). However, if the stress |σ | exceeds a certain value κ0 then
plastic flow occurs. Furthermore, unloading processes are always assumed to be elastic in our plasticity model.
After the plastic loading and the elastic unloading process, plasticity will occur again if |σ | ≥ κ1 with κ1 being the
largest value of the stress |σ | in the past.

This plasticity model reduces to the well-known hysteresis curve as shown in Fig. 1 in the
case of one stress and one strain variable.

Furthermore, for this yield criterion the function d
dt χ from Eq. (3) can be written in the

form

d

dt
χ = 1

2κ

(
1

µp(κ)
− 1

µ

)
d

dt
κ, (5)

with a measured function µp(κ) ≤ µ (cf. Fig. 1) and the elastic shear modulus µ = E
2(1 + ν)

.
Hence, we have a system of the form

Vt + ∇ · cL
¯
(U) = 0 (c = wave speed, to be specified later) (6)

σ
¯ t = C̄(σ

¯
) : ε

¯ t , (7)

where we defined the vectors

V = (v1, v2, v3, ε11, ε22, ε33, ε12, ε13, ε23)
T (8)

U = (v1, v2, v3, σ11, σ22, σ33, σ12, σ13, σ23)
T . (9)

Equation (6) summarizes the conservation of momentum (1) and the compatibility relations
(2) (L

¯
(U) is a linear function of U, since both equations are linear) and Eq. (7) contains the

stress–strain relationship from (3) with the rank-4 tensor C̄(σ
¯

).
Thus, the governing equation consists of a flux equation (6) and an ODE (7) at every

point. Theoretically, one could use Eq. (7) to replace the time derivatives of the strains by
time derivatives of the stresses in Eq. (6) to come to a closed form of a PDE. However,
numerically it turns out to be advantageous to solve these two parts of the physical system
separately, except for the case of elasticity (i.e., no plasticity is allowed in general), where
C̄(σ

¯
) is constant and hence the closed form of the system is a linear conservation law. One

of the main problems in the plastic case—which can only be treated numerically by splitting
the system into a PDE and an ODE at every point—is the fact that the matrix C̄(σ

¯
) can
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be discontinuous at the transition from elasticity to plasticity in a point and thus the exact
transition point has to be found by iteration (cf. below).

The most important difference between the elastic wave equation and the standard wave
equation φt t − c2�φ = 0 is the existence of several wave modes. In the elastic case there
are compression waves with wave speed

c1 =
√

K + 4/3µ

ρ

(with bulk modulus K = E
3(1 − 2ν

) and shear waves with wave speed

c2 =
√

µ

ρ
< c1.

In plastic regions we find an additional fast plastic wave c f and a slow plastic wave cs with
cs < c2 < c f < c1 (cf. [9, 17]).

3. NUMERICAL SCHEME

Due to the structure of Eqs. (6) and (7) our numerical scheme consists of two steps:

1. Solve flux equation (6) with a solver for hyperbolic PDEs. We use the Method of
Transport in the following.

2. Integrate the stress–strain relationship (7) in time for every cell of the grid with a
high-order ODE solver.

We will now discuss both steps in detail.

3.1. The Method of Transport

The basic idea of the Method of Transport is to rewrite flux equation (6) equivalently as
a coupled system of advection equations. Therefore, we introduce a set of direction vectors
�ni , i = 1, . . . , k which have to fulfill the following two consistency relations:

k∑
i=1

�ni = 0,
1

k

k∑
i=1

�ni �nT
i = I

¯
. (10)

With these definitions we can rewrite the flux equation as follows:

Vt + ∇ · cL
¯

= 0 (11)

⇔1

k

k∑
i=1

{
(V + L

¯
�ni )t + ∇ · c(V + L

¯
�ni ) �nT

i

} = 0. (12)

We observe that our flux equation can be written as a system of coupled advection equations,
each of which transports the quantity 1

k (V + L
¯

�ni ) at the velocity c �ni .
Note that Eq. (12) is strictly equivalent to the original equation (11). Our approximation

consists of decoupling the system; i.e., at a certain time step tn we define the independent
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quantities

Ri (�x, tn) := 1

k
(V(�x, tn) + L

¯
(�x, tn)�ni ) (13)

and then solve the advection equations

(Ri )t + ∇ · (Ri c�nT
i

) = 0 ∀i (14)

independently on the time interval I = [tn, tn+1]. At the next time step tn+1 the update for
the vector V reads.

V(�x, tn+1) =
k∑

i=1

Ri (�x, tn+1). (15)

This yields a first-order approximation for the exact solution in time if consistency relations
(10) hold, since

Vt =
k∑

i=1

(Ri )t = −
k∑

i=1

∇ · (cRi �nT
i

) = −∇ · c L
¯
.

However, to obtain approximations of higher order in time one has to add correction terms
into the numerical fluxes, i.e., one uses slightly modified quantities in the advection equations

Ri := 1

k
(V + (L

¯
+ K

¯
)�ni ),

where the correction matrix K
¯

can be found by comparing the Taylor expansion of the exact
solution to the expansion of the numerical scheme, which we show for the 2-D case (i.e.,
�x = (x, y)T ) in the following (the 3-D case is analogous). The derivation of the correction
terms is quite similar to the derivation of the second-order Lax–Wendroff scheme (cf. [16]).

For the exact solution of Eq. (6) we obtain

V(�x, t0 + �t) = V(�x, t0) + �tVt (�x, t0) + �t2

2
Vt t (�x, t0) + · · · .

Flux equation (6) in 2-D can be rewritten in the form (since it is linear)

Vt = A
¯

Ux + B
¯

Uy

with two constant matrices A
¯

and B
¯

. Taking into account the definition of V and U (Eqs. (8)
and (9)) and the stress–strain relationship (3) it is straightforward to see that a linear rela-
tionship of the form

Ut = Ā(σ
¯
)Vt (16)

exists with a matrix Ā.
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Now, we can easily replace derivatives in time by spatial derivatives:

Vt = A
¯

Ux + B
¯

Uy = ∇ · [ A
¯

U, B
¯

U] (17)

Vt t = A
¯
(Ut )x + B

¯
(Ut )y

= ∇ · {[ A
¯
, B

¯
](Ā(σ

¯
)Vt )} (18)

=: ∇ · Z
¯
. (19)

The Taylor expansion of advection equation (14) is

Ri (�x, t0 + �t) = Ri (�x, t0) + �t (Ri )t (�x, t0) + �t2

2
(Ri )t t (�x, t0) + · · · . (20)

Using advection equation (14), time derivatives can be replaced by spatial derivatives:

(Ri )t = −∇ · (Ri �nT
i c
)

(21)
(Ri )t t = −∇ · ((Ri )t �nT

i c
) = ∇ · ((∇ · (Ri �nT

i c
))�nT

i c
)
.

Obviously, our scheme is first-order accurate since

k∑
i=1

Ri (�x, t0) = V(�x, t0)

k∑
i=1

Ri (�x, t0)�nT
i c = c L,

¯

which gives

k∑
i=1

(Ri )t (�x, t0) = Vt (�x, t0) = −∇ · c L
¯
(�x, t0) = −

k∑
i=1

∇ · (Ri (�x, t0)�nT
i c
)
. (22)

However, comparing Eq. (17) to Eq. (21) it turns out that the second-order derivatives in
time are not the same,

Vt t −
k∑

i=1

(Ri )t t = ∇ ·
(

Z
¯

+
k∑

i=1

(Ri )t �nT
i c

)
= ∇ · K̄

¯
�= 0, (23)

with K̄
¯

:= Z
¯

+∑k
i=1(Ri )t �nT

i c. We define the correction matrix K by

K
¯

= �t

2
K̄
¯

(24)

and the transported quantities R̃i by

R̃i := 1

k

(
V + (L

¯
+ 1

c
K
¯
)�ni

)
. (25)
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Equation (22) still holds for the R̃i (⇒ the scheme is still consistent). Furthermore, one can
easily verify

k∑
i=1

(R̃i )t (�x, t0) =
k∑

i=1

(Ri )t (�x, t0) − �t

2
∇ · K̄

¯
(26)

and consequently

V(�x, t0 + �t) −
k∑

i=1

R̃i (�x, t0 + �t) = O(�t3).

Our decomposition is now of second order, since the second-order error (23) is compensated
by the correction term appearing in the first-order derivative of R̃i . Third and fourth order
can be achieved analogously.

The integration of the decoupled advection equations (14) can be written in a simple
explicit form, since the wave speed c is constant:

Ri (�y, t) =
∫

R2
Ri (�x, tn)δ(�y − [�x + c�ni�t]) d �x. (27)

The question arises as to what wave speed we must choose for c. Any choice of c would
give us a consistent scheme but for stability reasons (CFL-condition) the numerical wave
speed has to be greater to or equal to the physical wave speed. For that reason, we choose
in elastic and plastic regions the greatest possible physical wave speed, (i.e., c = c1) as the
speed to advect the quantities Ri .

So far our discussion has been semidiscrete only since we have not discretized the space
variables yet. The space discretization can be performed as for all types of finite volume
methods; i.e., one has to add the following two steps:

• At a certain time level one computes cell averages for each cell Ii j (we assumed a grid
in 2-D) for the quantity V according to Eq. (15):

V̄ n+1
i j = 1

|Ii j |
k∑

l=1

∫
Ii j

Rl(�y, tn+1) d�y.

• Before each time step one has to reconstruct the function V(�x, t) by polynomials in
space from the previously updated cell averages.

It is important to mention that any wave model fulfilling conditions (10) will lead to a
consistent numerical scheme. The simplest models (in 2-D) which can be found are the four
diagonal propagation directions (i.e., k = 4):

�n1 =
(

1

1

)
, �n2 =

(
1

−1

)
, �n3 =

(−1

1

)
, �n4 =

(−1

−1

)
. (28)

However, to obtain good numerical results it is important to take into account more physical
information to chose an appropriate wave model. For this reason, we chose a wave model
for the decomposition of our 2-D or 3-D wave equation, which reduces automatically to the
decomposition into right eigenvectors for an elastic 1-D problem, which we know is exact
in 1-D, which means that if we simulate a 1-D problem, along the x- or y-axis with our
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multidimensional scheme it will be equivalent to the transport of right eigenvectors at the
speed of the eigenvalues of the Jacobian matrix in 1-D. An example of such a wave model
in 2-D will be presented in the next section.

To conclude, the Method of Transport yields an update for the vector V which is high-
order in time due to the use of correction terms and high order in space by using a polynomial
reconstruction in each cell.

3.2. Choice of a Wave Model for Plane Strain

As mentioned in the previous section, the choice of the wave model �ni plays an important
role in achieving good numerical results. Hence, to take into account the physical behav-
ior of the system, we require our multidimensional decomposition to reduce to the exact
1-D decomposition into right eigenvectors if we simulate a linear 1-D problem with our
multidimensional scheme.

We demonstrate this argument for the 2-D case of a solid under so-called plane-strain
waves; i.e., the z-component of the displacement and velocity vector is vanishing:

ε33 = σ23 = σ13 = v3 ≡ 0. (29)

We start our discussion with the wave model for elasticity and then transfer the results to
plastic waves. For elasticity the ODE (7) is trivial since C

¯
(σ

¯
) is constant. Thus, we can

plug Eq. (7) and condition (29) into Eq. (6) and obtain the wave equation in 2-D for plane
strain (closed form),




v1

v2

σ11

σ22

σ33

σ12




t

= ∇ ·




1
ρ
σ11

1
ρ
σ12

1
ρ
σ12

1
ρ
σ22

v1
(

K + 4
3µ
)

v2
(

K − 2
3µ
)

v1
(

K − 2
3µ
)

v2
(

K + 4
3µ
)

v2
(

K − 2
3µ
)

v2
(

K − 2
3µ
)

v2µ v1µ




, (30)

with the Bulk modulus K = E
3(1 − 2ν)

. For our multidimensional decomposition we will use a
combination of the right eigenvectors for the x- and y-directions, which takes into account
the propagation of transverse waves at speed c2 and longitudinal waves at speed c1. At first,
we remember that for any linear conservation law in 1-D

Ut + A
¯

Ux = 0

the exact solution just advects right eigenvectors of the matrix A
¯

at the speed of its eigenval-
ues (cf.[8]). Thus, we have a look at the eigenvectors which are transported by 1-D waves
along the x- and y-axes. Table (I) summarizes the result.

The equation has four nontrivial eigenvalues ±c1 for longitudinal waves and ±c2 for
shear waves.

Now, we want our multidimensional decomposition into advection equations to trans-
port exactly these eigenvectors if we simulate a 1-D problem, which means that our 2-D
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TABLE I

Decomposition of the 1-D Elastic Wave Equation into Right Eigenvectors

U =
∑

i Ri Along the x- and y-axes

Eigenvalue of Jacobian Ri in x-direction Ri in y-direction

±c1




1

2

(
v1 ± σ11

ρc1

)
0

1

2
(v1ρc1 ± σ11)

1

2

(
v1

ρc1
± σ11

K − 2/3µ

K + 4/3µ

)
1

2

(
v1

c1
± σ11

K − 2/3µ

K + 4/3µ

)
0







0

1

2

(
v2 ± σ22

ρc1

)
1

2

(
v

c1
± σ22

K − 2/3µ

K + 4/3µ

)
1

2
(v2ρc1 ± σ22)

1

2

(
v2

c1
± σ22

K − 2/3µ

K + 4/3µ

)
0




±c2




0
v2

2
± σ12

2ρc2

0

0

0
σ12

2
± v2ρc2

2







v1

2
± σ12

2ρc2

0

0

0

0
σ12

2
± v1ρc2

2




0




0
0
0

σ22 − K − 2/3µ

K + 4/3µ
σ11

0
0







0
0

σ11 − K − 2/3µ

K + 4/3µ
σ22

0
0
0




0




0
0
0
0

σ33 − K − 2/3µ

K + 4/3µ
σ11

0







0
0
0
0

σ33 − K − 2/3µ

K + 4/3µ
σ22

0




numerical scheme reduces to the exact 1-D decomposition automatically. Therefore, we
have to use a different wave model for each component of Eq. (30); i.e., in each component
we transport the physical quantities (from Table I) with the “correct” physical speed along
the x- and y-axes (cf. Table II). Hence, at this point we generalize Fey’s concept (cf. [2, 3]) of
decomposing a PDE into advection equations presented in Eq. (13) in such a way that each
component of the state vector V and the flux matrix (L

¯
is decomposed and advected with a

different wave model �ni .1 However, the algorithms for solving the advection equations and
calculating correction terms for high order presented above stay the same.

1 To be mathematically correct one has to use a second index j for the wave model �n j
i , denoting the component j

of the PDE that it is used for. For the following example focusing on one component of the PDE this index is omitted.
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TABLE II

Decomposition of the Elastic Wave Equation in 2-D into Advection Equations

Equation Transported quantity × 4 Wave model

∂v1

∂t
= ∇ ·

(σ11

ρ
,
σ12

ρ

)
v1 −

( 1

c1

σ11

ρ
,

c1

c2
2

σ12

ρ

)
�ni ✟✟✟✯

❍❍❍❥
❍❍❍
✟✟✟✙

c1�nT
i = (±c1, ±c2)

∂v2

∂t
= ∇ ·

(σ12

ρ
,
σ22

ρ

)
v2 −

( c1

c2
2

σ12

ρ
,

1

c1

σ22

ρ

)
�ni ✁

✁✁✕
❆

❆❆❑

❆
❆❆

✁
✁✁☛

c1�ni =
(±c2

±c1

)

∂σ11

∂t
= ∇ · (av1, bv2)

∂σ22

∂t
= ∇ · (bv1, av2)

∂σ33

∂t
= ∇ · (bv1, bv2)

σ11 − 1

c1
(av1, bv2)�ni

σ22 − 1

c1
(bv1, av2)�ni

σ33 − 1

c1
(bv1, bv2)�ni




✒

❅
❅�

❅
❅❘




✠

c1�nT
i = (±c1, ±c1)

∂σ12

∂t
= ∇ · (µv2, µv1) σ12 − 1

c2
(µv2, µv1)�ni 

✒❅❅�

❅❅❘

✠
c1�nT

i = (±c2, ±c2)

Notes. For each component of the equation (left column) a different wave model is used (right
column). The transported quantities (i.e., the vectors Ri ) are indicated in the middle column
componentwise (the factor 1/4 is omitted). The advection equations for this multidimensional
decomposition reduces to the 1-D decomposition into right eigenvectors along the x- and y-axes.
a = K + 4/3µ; b = K − 2/3µ.

As an example, we demonstrate our argument for the first component of system (30). A
1-D wave along the x-axis transports the quantity 1

2 (v1 ± σ11
ρc1

) at speed ±c1 along the x-axis,

whereas a 1-D wave along the y-axis transports the quantity 1
2 (v1 ± σ12

ρc2
) at speed ±c2 along

the y-axis in the first component of the system (cf. first and second row of Table I). Our
multidimensional scheme indicated in Table II now contains for the first component of the
system the advection equations

1

4

(
v1 −

(
1

c1

σ11

ρ
,

c1

c2
2

σ12

ρ

)
�ni

)
t

+ ∇ ·
(

1

4

(
v1 −

(
1

c1

σ11

ρ
,

c1

c2
2

σ12

ρ

)
�ni

)
c1 �nT

i

)
= 0

(31)

for the four direction vectors �ni = (±1, ±c2/c1)
T . If we sum Eq. (31) for the two direction

vectors �ni = (±1, c2/c1)
T (i.e., we want to analyze the y-direction by “summing out” the

x-direction) we obtain

1

2

(
v1 ± σ12

c2ρ

)
t

± ∇ ·
(

c2
1

2

(
v1 ± σ12

ρc2

)
(1, 1)

)
= 0, (32)

where the two signs indicate the two directions we did not sum over. For a 1-D problem
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along the y-axis we now set ∇ = (0, ∂
∂y ) and obtain the correct 1-D advection equation

along the y-axis (cf. Table I):

1

2

(
v1 ± σ12

c2ρ

)
t

± c2
1

2

(
v1 ± σ12

ρc2

)
y

= 0. (33)

Analogously one can sum over the y-direction and set ∇ = ( ∂
∂x , 0) to obtain the correct

advection equation along the x-axis. The other five components of our system can be treated
in the same way. Thus, for a 1-D problem along the coordinate axis our scheme reduces to
the exact 1-D transport of eigenvectors.

For plasticity we use the same idea. The only difference with elasticity is that we do not
replace strain variables by stress variables in Eq. (6), which means instead of decomposing
Eq. (30) we decompose the flux equation

Vt + ∇ · cL
¯

= 0

with

L
¯

= −1

c




σ11
ρ

σ12
ρ

σ12
ρ

σ22
ρ

v1 0

0 v2

0 0
1
2v2

1
2v1




.

The wave model is exactly the same as that for elastic waves (cf. third column in Table II).
The required stress update is discussed in the following section.

3.3. Stress Update

The Method of Transport we described previously yields an update for the strain and
velocity vector contained in the vector V at each time step. For purely elastic materials
the stress variables can be calculated from the strains by their linear relationship (cf. [6]).
However, for the update of the stress variables σ

¯
in the plastic case one has to integrate the

ODE (7) in time. The problem is that the strain variables ε
¯

are only known at discrete time
levels tn and tn+1. However, to integrate Eq. (7) in time we have to know the derivative ε

¯ t

on the whole time interval [tn, tn+1]. Therefore, we reconstruct the strain path in time by
polynomials in time:

ε
¯
(�x, t) = ε

¯
(�x, tn) + a

¯
(�x)(t − tn) + b

¯
(�x)(t − tn)2 + · · · ∀t ∈ [tn, tn+1].

Since we can compute the time derivatives of the strain variables at time tn and tn+1 by
using

∂

∂t
εi j (t

∗) = 1

2

(
∂v j

∂xi
+ ∂vi

∂x j

)
(34)
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S11

nσ
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FIG. 2. Integration of the stress–strain relationship in the stress space from σ
¯

n to the new state σ
¯

n+1. The ODE
solver has to be restarted on the yield surface (i.e., the level set of the yield function in the stress space separating
elastic from plastic states) since the ODE can be discontinuous at the transition from elasticity to plasticity.

∂2

∂t2
εi j (t

n) = 1

2ρ

∑
k

(
∂2

∂xi∂xk
σik + ∂2

∂x j∂xk
σ jk

)
(tn)

at t∗ = tn or tn+1 (35)

(vi is known at time tn and tn+1 after the PDE time step and σi j is known at time tn) we can
reconstruct the strain variables up to order 4 and the time derivatives of the strain variables
(and thus the right-hand side of ODE (7)) up to order 3.

Since we use third-order fluxes in the following numerical examples, it is sufficient to
reconstruct the right-hand side of ODE (7) up to errors O(�t4) and using a high-order
ODE solver (e.g., Runge–Kutta), the stress update will be of third order in smooth regions.
However, any order can be achieved by using higher spatial derivatives analogous to (34).

With the help of this reconstruction one can integrate Eq. (7). It is important to note that
during the integration a transition from elasticity to plasticity might occur where the right-
hand side of the ODE is discontinuous. In such a case one has to find the exact transition
point (e.g., by bisection or with Newton’s method) and then restart the ODE solver at this
point (cf. Fig. 2).

4. NUMERICAL EXAMPLE FOR PLANE STRAIN

We consider two compression waves hitting a crack in a plate (cf. Fig. 3) under the
previously described plane-strain condition. The physical parameters and initial conditions
for the waves are chosen as

v0
2 = 0.55, σ 0

22 = v0
2

c1

c1 = 1, c2 = 1√
3

and the initial value for the yield parameter κ0 is

κ0 = 1 and
µp

µ
= 3

16
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FIG. 3. Compression waves carrying the velocity ±v0
2 and the stress component σ 0

22 approaching a crack.

(the plastic shear modulus µp(κ) is assumed to be constant). The crack is simulated as a
free boundary; i.e., the normal force and the boundary vanishes

σ
¯

�n = 0 with �n denoting the surface normal.

At first, one observes (cf. Fig. 4) two circular waves (P-wave and shear wave), which were
created at the crack tip where the stress turns out to be singular. Furthermore, there is a von
Schmidt wave (with wave speed c2) created by the P-wave along the crack (it is a hypersonic
wave) and a Rayleigh wave propagates along the surface of the crack. In addition to this

FIG. 4. Numerical computation of third-order of the maximal shear stress around the crack tip in the elastic
case. The singularity created at the crack tip, the compression wave (=circular P-wave created at the crack
tip propagating at c1), the circular shear wave (propagating at c2 < c1), the Rayleigh wave (a wave propagating
along the cracks surface), the von Schmidt wave (a conic wave created by the P-wave along the crack), and the
plastic zone are well resolved (grid: 500 × 500 cells). The behavior of the waves is self-similar with respect to
space/time.
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FIG. 5. One-dimensional crack in a body. From both sides of the crack, a plane shear wave propagates along
the y-direction toward the crack. At time t = 0 both waves hit the crack.

physical behavior observed in the elastic region a zone of plastic deformation is created at
the crack tip.

All physical effects one expects to appear around a crack tip are well computed.

5. NUMERICAL RESULTS IN 3-D

The extension of our scheme to 3-D is straightforward. Instead of using four waves �ni in
each component we have to use eight waves, each of which transports information at speed
c1 or c2 as in the 2-D case (cf. Table II).

We consider a body in three space dimensions with a crack along the x-direction; i.e., all
points in the set M = {(x, y, z)T |y = 0, z = 1, and 0 ≤ x ≤ 1} are assumed to belong to
the crack. Analogous to the 2-D case a plane shear wave propagates from both sides along
the y-axis toward the crack (cf. Fig. 5).
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Both shear waves carry the stress and velocity component σ12 = 0.5 and v1 = −(± σ12
c2

),
with the positive and negative sign indicating the positive and negative propagation direction
along the y-axis. The wave speeds and the yield condition are chosen as in our previous
2-D example.

Figure 6 (left) shows the plastic zone created around the crack, which is a rather flat
region on the x–z-plane. At the crack tip the stress turns out to be very intense. Further-
more, as in 2-D there is a spherical reflection created at the crack tip (cf. Fig. 6 on the
right).

6. CONCLUSION

Although the elastic–plastic wave equation is not a pure conservation law, we could use
the Method of Transport combined with a Runge–Kutta ODE solver to simulate plastic
waves in solids in high order. The method we presented can be used up to any order in space
(by reconstructing the solution by polynomials after each time step) and in time (by using
correction terms in the numerical flux) and it can be used with any kind of hysteresis model,
which can be described by an ODE at every point. Furthermore, Fey showed in [2, 3] that
the Method of Transport can be used for nonlinear conservation laws, which shows that our
method is not limited to the linearized model of small strains. Compared to other methods
(cf. Introduction) the Method of Transport has the advantage that it can be implemented
to any order in space and time and hence it allows high-resolution simulations with less
computation time. Moreover, numerical experiments show that all kinds of physical effects
known from textbooks, such as Rayleigh waves, von Schmidt waves, etc., can be simulated
well.
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